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Abstract: In this paper a novel approach to unknown input estimation based on a parity
equations concept is developed. Unlike the unknown input observers based on the Kalman
filtering approach, the observer proposed here is independent of the system state vector.
Therefore, due to the reduction of the number of estimated signals, a higher accuracy of the
input estimation is achieved. This makes the scheme advantageous in cases when the accuracy
of the input estimate is crucial and the knowledge about the system states is not required. By
increasing the order of the parity space, which is a tuning parameter of the algorithm proposed,
the new approach allows the influence of the effects of measurement noise to be reduced. A
Lagrange multiplier method is used to obtain an analytical solution for the filter parameters.
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1. INTRODUCTION

The history of observers dates back to the 1960s with
the Luenberger system state observers (see Luenberger
(1964)). Subsequently, state observers have been extended
to the class of systems with both, known and unknown
system inputs (see for example Darouach and Zasadzinski
(1997)). Over the last decade the simultaneous estimation
of both, state vector and unknown inputs, based on a
Kalman filtering approach has gained an interest (cf.
Floquet and Barbot (2006); Hsieh (2000)). Gillijns and
De Moor (2007a) combined the state observer proposed by
Darouach and Zasadzinski (1997) and the unknown input
estimator of Hsieh (2000) creating a state and unknown
input observer, which is optimal in the minimum variance
sense. This approach has subsequently been extended to
the case of a linear system with a direct feedthrough (see
Gillijns and De Moor (2007b)).

In this paper a new approach to the problem of unknown
input estimation based on parity equations (PE) is pro-
posed. A detailed explanation of PE can be found in Ding
(2008); Gertler (1991); Li and Shah (2002). A very general
relationship between the PE and the left inverse of the
minimum-phase deterministic system has been presented
by Edelmayer (2005). On the contrary, in this paper PE
are used to obtain an approximation (estimate) of the un-
known input of a stochastic system, whose measurements
are affected by noise. The method is suitable for both
minimun-phase and nonminimum-phase systems. The con-
tribution of this paper is to utilise the Lagrange multiplier
method to provide an analytical solution for the filter
parameters, which minimise effects of measurement noise.
Furthermore, unlike the unknown input observers (UIOs)
based on the Kalman filtering approach (see for example

Gillijns and De Moor (2007a,b)), the developed observer
is orthogonal to the system state vector.

In the framework of this paper, firstly, the PE theory
is explained. Subsequently, the derivation of the novel
filter is provided. Use is made of the Lagrange multiplier
method (see for example Bertsekas (1982)) to obtain
an analytical solution to the unknown input estimator
parameters. Then, based on a numerical example, the
influence of the parity space order (which is a tuning
parameter of the filter) on the efficacy of the algorithm
is analysed. Finally, the accuracy of the novel method is
compared to that of the Kalman filter-based minimum
variance unbiased unknown input estimator proposed by
Gillijns and De Moor (2007b).

2. DESCRIPTION OF APPROACH

In this section the new algorithm is derived. Firstly, for
completeness, PE are described in Subsection 2.1, see e.g.
Li and Shah (2002). Then, in Subsection 2.2, using existing
concepts, a new unknown input observer based on PE
(further referred to as PE-UIO) is developed.

2.1 Parity Equations

Assume that a linear dynamic discrete time two-input
single-output system is represented by an nth order state
space equation of the following form:

x(t+ 1) = Ax(t) +Bu0(t) +Gv(t)

y0(t) = Cx(t) +Du0(t) +Hv(t)

u(t) = u0(t) + ũ(t)

y(t) = y0(t) + ỹ(t)

(1)



where A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, D ∈ R1×1, G ∈
Rn×1 and H ∈ R1×1. The terms u0(t), v(t) and y0(t) refer
to, respectively, known and unknown input to the system
and the system output. An errors-in-variables (EIV) case
is considered (see, for example, Söderström (2007)), i.e.
all measured variables, which are input u(t) and y(t),
are affected by a zero mean, white Gaussian mutually
uncorrelated measurement noise sequences denoted by
ũ(t) and ỹ(t), respectively. Hence, the noise free but
unmeasured system input and output are denoted as u0(t)
and y0(t), respectively.

The following stacked vector of the unknown input, v(t),
is created (see, for example, Li and Shah (2002)):

V = [ v(t− s) v(t− s+ 1) · · · v(t) ]
T

(2)

where the term s denotes the order of the parity space.
Analogously, one can build stacked vectors of y(t), y0(t),
ỹ(t), u(t), u0(t) and ũ(t) which are denoted, respectively,

as Y , Y0, Ỹ , U , U0 and Ũ . By making use of this notation
the system (1) can be expressed in the form of:

Y0 = Γx(t− s) +QU0 + TV (3)

where Γ is an extended observability matrix:

Γ =
[

CT ATCT · · · (As)TCT
]T

∈ R(s+1)×n (4)

and Q is the following block Toeplitz matrix:

Q =













D 0 · · · 0
CB D · · · 0
CAB CB · · · 0

...
...

. . .
...

CAs−1B CAs−2B · · · D













∈ R(s+1)×(s+1) (5)

Analogously, the matrix T is built by replacing D with H
and B with G in the matrix Q. In order to eliminate the
unknown state vector from (3), a row vector W is defined,
which belongs to the left nullspace of Γ, i.e.

WΓ = 0 (6)

Hence (3) can be reformulated as:

WTV = WY0 −WQU0 = W (Y − Ỹ ) −WQ(U − Ũ) (7)

By rearranging the measured (known) variables on the
right-hand side of (7) and the unknowns on the left-hand
side, the following PE is obtained (cf. Li and Shah (2002)):

WTV +WỸ −WQŨ = WY −WQU (8)

In the next section use is made of the PE in order to derive
a novel algorithm for the unknown input estimation.

2.2 Input reconstruction with measurement noise filtering

Denote the matrix spanning the left nullspace of Γ as Γ⊥.
Consequently, the row vector W is a linear combination
of rows of Γ⊥. It is assumed here that the system (1)
is observable, hence the extended observability matrix Γ
is of full rank. Therefore, the dimension of Γ⊥ is (s −
n + 1) × (s + 1), and since T is square, it is true that
Γ⊥T ∈ R(s−n+1)×(s+1). Thus in the case of noise-free
input and output measurements, i.e. when U=U0 and
Y=Y0, the following equation holds (cf. (7)):

Γ⊥TV = b (9)

where b is a column vector of (s− n+ 1) elements, and:

b = Γ⊥Y − Γ⊥QU (10)

Note, that the matrix T consists of the Markov parameters
of the relation between the unknown input and the output,
which are given by (see Kirtikar et al. (2009)):

Ti =

{

H , i = 0

CAi−1G , i > 0
(11)

The relative degree of the system Gv(z) = C(zI−A)−1G+
H, denoted as r, is the smallest number for which Tr 6= 0
(cf. Edelmayer (2005)). Hence, one can note that (10) is a
homogenous set of equations (i.e. the sequence of unknown
input values can be determined explicitly from (10)) only,
if the system Gv(z) has no zeros, i.e. the relative degree is
equal to the order of Gv(z). (Which means that the last r
columns of the matrix Γ⊥T are equal zero.) Nevertheless,
the unique solution to the set of equations (10) can be
seriously affected by the measurement noise ũ(t) and ỹ(t).
The algorithm proposed here minimises the effects of the
unwanted measurement noise. Furthermore, the technique
can be utilised to yield an approximation of v(t) in the case
when Gv(z) has zeros. The proposed method is suitable for
both minimum-phase and nonminimum-phase systems.

It is proposed to calculate the value of the unknown input
as:

v̂(t) = WY −WQU (12)

which, in the case of a noise-free input and output mea-
surements, is:

v̂(t) = WTV (13)

Thus, based on the assumption that the unknown input is
slowly varying, its estimate can be calculated as a linear
combination of the sequence v(t−s), v(t−s+1), · · · , v(t).

v̂(t) = α0v(t) + α1v(t− 1) + · · · + αsv(t− s) (14)

where the α parameters are dependent on the choice of the
vector W , such that:

WT = [ αs αs−1 · · · α0 ]
T

(15)

One can note that (14) is an equation of a moving average
finite impulse response filter with the gain given by the
sum of the α parameters, i.e. the sum of elements of the
vector WT . Thus, it is suggested here that the vector W
should be selected in such a way, that the sum of elements
of the vector WT is equal unity.

It is anticipated that the choice of the order of the parity
space s, as well as the vector W may influence a lag in the
estimate of the unknown input (due to the moving average
filtering property of the unknown input estimator).

In the next subsection an algorithm for the selection of
an optimal vector W is derived based on the Lagrange
multiplier method.

2.3 Selection of optimal W

In the case of noisy input and output measurements,
equation (12) becomes:

v̂(t) = WTV +WỸ −WQŨ (16)

Hence, the estimate of the unknown input is affected by
a coloured noise. However, by a careful choice of W , the
degrading effect of noise can be minimised. Due to the fact
that ỹ(t) and ũ(t) are uncorrelated, white and zero mean
(i.e. the expected values E{ỹ(t)} = E{ũ(t)} = 0), it is
true that:

E{WỸ −WQŨ} = 0 (17)



Hence asymptotically, a presence of the measurement noise
does not cause a bias in the unknown input estimate.
Furthermore, an influence of the measurement noise on the
unknown input estimate can be minimised by reducing the
variance of the term WỸ −WQŨ , i.e.:

E{(WỸ −WQŨ)(WỸ −WQŨ)T } = WΣỹW
T +

+WQΣũQ
TWT −WΣT

ũỹQ
TWT −WQΣũỹW

T
(18)

where Σũ = E{Ũ ŨT }, Σỹ = E{Ỹ Ỹ T }, Σũỹ = E{Ũ Ỹ T }.
Due to the fact that the input and output measurement
sequences are considered to be white, zero mean and
mutually uncorrelated:

Σũ = σ2
ũI, Σỹ = σ2

ỹI, Σũỹ = 0 (19)

where the terms σ2
ũ and σ2

ỹ refer to the variance of
the measurement error of the system input and output,
respectively, whilst I is an identity matrix of appropriate
dimension.

Subsequently, the vector W should be selected to minimise
the cost function f(W ):

f(W ) = WΣỹW
T +WQΣũQ

TWT (20)

subject to the following constraints:

(1) Sum of elements of WT is equal to 1.
(2) WΓ = 0.

The cost function (20) can be minimised by making use
of the Lagrange multipliers method (see, for example,
Bertsekas (1982)). Denote the rows of Γ⊥ by γ1, γ2, ...,
γ(s−n+1):

Γ⊥ =
[

γT
1 γT

2 · · · γT
(s−n+1)

]T

(21)

The vector W is a linear combination of rows of Γ⊥, i.e.

W =
s−n+1
∑

i=1

piγi (22)

Hence the cost function (20) can be reformulated as a func-

tion of the parameter vector P = [ p1 p2 · · · ps−n+1 ]
T
:

f(P ) =

(

k
∑

i=1

piγi

)

Σ





k
∑

j=1

pjγ
T
j



 =

k
∑

i=1

k
∑

j=1

pipjγiΣγ
T
j

(23)
where k = s− n+ 1 and:

Σ = Σỹ +QΣũQ
T (24)

The cost function f(P ) is required to be minimised subject
to the constraint:

g(P ) = sumrow(WT ) − 1 = 0 (25)

where the operator sumrow(A) denotes a column vector
whose elements are sums of the appropriate rows of the
matrix A.

The solution to the Lagrange minimisation problem is
given by (see Bertsekas (1982)):

∇f(P ) = λ∇g(P ) (26)

The partial derivative of f(P ) with respect to the ith

element of the vector P (denoted as pi) is:

∂f(P )

∂pi

=

k
∑

j=1

pjγiΣγ
T
j +

k
∑

j=1

pjγjΣγ
T
i (27)

After some manipulations the gradient of f(P ) is reformu-
lated as:

(∇f(P ))T =
(

Γ⊥Σ(Γ⊥)T + (Γ⊥Σ
(

Γ⊥)T
)T
)

P (28)

The partial derivative of the constraint function g(P ) with
respect to pi is calculated via:

∂g(P )

∂pi

= sumrow(γiT ) (29)

Thus, the gradient of g(P ) can be reformulated as:

(∇g(P ))T = sumrow(Γ⊥T ) (30)

By making use of the notation:

S =
(

Γ⊥Σ(Γ⊥)T + (Γ⊥Σ
(

Γ⊥)T
)T
)

(31)

and
ψ = sumrow(Γ⊥T ) (32)

the solution to the Lagrange optimisation problem (26)
can be rewritten as:

SP = λψ (33)

Hence, the optimal parameter vector P is given by:

P = λS−1ψ (34)

The constraint function g(P ) = 0 can be rewritten as:

PTψ − 1 = 0 (35)

Incorporating (34) into (35):

λ
(

S−1ψ
)T
ψ − 1 = 0 (36)

Hence, the Lagrange multiplier is given by:

λ =
(

(

S−1ψ
)T
ψ
)−1

(37)

The algorithm for calculating the optimal vector W is
summarised below:

(1) Select the order of the parity space s ≥ n and build
matrices Γ, Q and T .

(2) Obtain Γ⊥ (the left nullspace of Γ).
(3) Compute Σ using (24).
(4) Calculate the column vector ψ and the matrix S

making use of (32) and (31), respectively.
(5) Obtain the Lagrange multiplier λ using (37).
(6) Calculate the parameter vector P by (34).
(7) Compute the vector W as:

W = PT Γ⊥ (38)

3. NUMERICAL EXAMPLE

Consider an exemplary system, described by (1), whose
state space matrices are:

A =

[

0 0.765
1 −0.050

]

B =

[

0.005
0.5

]

G =

[

1.383
0.975

]

C = [ 0 2 ] D = [0] H = [1]

(39)

The efficacy of the PE-UIO filter, designed for the system
(39), for different cases of s and different cases of the input
and output measurement noise variances is evaluated. Two
efficiency indices are considered in order to assess the
efficacy of the algorithms examined, namely the minimal



mean square error (MSEmin) and the estimation lag (EL).
Consider a classical mean square error (MSE) index, where
the true input v(t) is delayed by i samples with respect to
the estimated input v̂(t):

MSE(i) =

∑

t (v̂(t) − v(t− i))
2

∑

t v
2(t− i)

(40)

The word minimum here refers to the the fact that the
minimal value of MSE, as a function of the delay i,
is considered (i.e. MSEmin). The delay, for which the
function MSE(i) achieves its minimum, is denoted EL (EL
is the argument of MSE(i), i.e. i =EL):

EL = arg min
i

MSE(i)

MSEmin = MSE(EL)
(41)

Hence, the EL indicates the number of samples by which
the unknown input estimate is delayed with respect to the
input. The MSEmin provides the accuracy measure of the
unknown input estimate (delayed by the EL).

A Monte-Carlo simulation comprising of 100 runs has
been carried out. Mean values of the MSEmin and the
EL for each simulation setup are presented in Table 1. As
expected, an increase in the parity space order results in
a corresponding increase in the EL. For the first two cases
of the measurement noise (σ2

ũ, σ
2
ỹ), i.e. ((0.1,2) and (1,1))

the MSEmin reduces as s increases from 3 to 6, however, a
further increase of s degrades the efficacy of the PE-UIO
(in terms of MSEmin).

The last row of Table 1 shows the efficacy of the Kalman
filter-based minimum variance unbiased (MVU) state and
input estimator proposed by Gillijns and De Moor (2007b).
Due to the moving average filtering properties of the PE-
UIO and that only a single signal (the unknown input)
is estimated, the PE-UIO appears to be advantageous in
comparison to the MVU approach in the case examined.
Fig. 1 presents an exemplary visual illustration of the
unknown input estimation using MVU and PE-UIO with
s = 6.

Table 1. Simulation results (σ2
ũ, σ

2
ỹ)

(σ2

ũ
, σ2

ỹ
) (0.1,2) (1,1) (10,1)

s EL MSEmin EL MSEmin EL MSEmin

3 0 2.454 0 2.764 0 13.639
4 0 2.268 0 2.210 0 6.469
6 1 1.572 1 1.422 1 3.012
8 2 2.496 2 2.086 2 2.668

MVU 0 19.4971 0 18.841 0 28.7843

4. CONCLUSIONS AND FURTHER WORK

A new approach for reconstructing the unknown input has
been developed. The main advantage of the new scheme is
that it does not rely on state estimation. Therefore, since
the number of estimated signals is reduced, the estima-
tion accuracy (in terms of the discrepancy between the
true and the estimated input) is increased. Consequently,
the proposed approach offers advantages in cases, when
knowledge about the system states is not required. Due
to the moving average filtering properties of the proposed
scheme, the effect of measurement noise on both signals,
i.e input and output, is minimised.
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Fig. 1. Comparison of efficacy of PE-UIO and MVU (σ2
ũ =

1, σ2
ỹ = 1)

Further work aims towards the development of the algo-
rithm for multiple-input multiple-output systems. Consid-
eration is also to be given to develop the algorithm for
the more practical case of coloured measurement noise.
Furthermore, the problem of choice of the order of the
parity space depending on the noise variance remains open.
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