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Outline of presentation

e Brief historical-technical review of control for industrial systems
e Classification of bilinear models
e |dentification of first and second order bilinear model structures

e On-line parameter estimation of bilinear models - use of cautious least
squares

e Application of bilinear approach to industrial systems

¢ Industrial high temperature furnace (IHTF)

¢ Heating ventilation & air conditioning (HVAC)
e Development of bilinear errors-in-variables (EIV) identification and filtering

e Concluding remarks & further work

1/24



Brief historical-technical review of control for industri al systems

1940s Three term proportional integral derivative (PID) control

1971-3 Optimal d-step ahead predictive schemes MV, GMV & incremental
forms

1978-81 Sub-optimal pole-placement controllers - polynomial & state-space
forms

1987 Long range predictive control schemes GPC

1987 Proportional integral plus (PIP) in Non-Minimum State-Space (NMSS)
1999 Bilinear PID/PIP

2001 Bilinear PID implemented on IHTF

2008 Bilinear PID implemented on HVAC

2009 Bilinear EIV identification
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Bilinear models - classification

bilinear Hammerstein
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linear
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nonlinear Volterra
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Bilinear models - subset of state dependent parameter model

S

e General form of bilinear model

Na M Na M
y(t) = ) ay(t—i)+ ) but-d—i)+ > > pjut-d-i+1Lyt-d- j)
=1 i=0 =1 i=1

e General form of state dependent parameter (SDP) model

Na Np
y(©) = > altx®t-i) + > bilx®iut —d - i)
i=1 i=0

v(t) - non-minimal state variable vector, a{y(t)} and bi{y(t)} - state dependent parameters
e Applications:

Industrial furnace: y(t)-local furnace temperature [°C], u(t)-gas valve position [%]

y(t) = —awy(t — 1) + bafy(t)}u(t — d) where bu{(t)} = b1 + may(t— 1)

Heating ventilation and air conditioning (HVAC) plant: y(t)-dew-point temperature [°C],
uy(t)-gas valve position [%], ux(t)-outside relative humidity [%]

y(t) = —agy(t — 1) + bafy(t)ur(t —d) + 0 where  by{y(t)} = by + 1Ux(t — d) + m2y(t — 1)
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ldentification of first order bilinear model structures

e Steady-state characteristics - steady-state output (Yss) and steady-state gain (SSG) given by:

boUss b0
Ysg = and SSGqe =
53 ap — 1oUss 53 ap — 1oUss

where Ugs - steady-state input

e First order bilinear system

Y(s) bo Uss

G(s) = = with U(s) = =
) U(s) s+ag—1noUss S S

e Corresponding time response to step input

boUss _t . 1
t) = 1-et" with T =
v ao — 1oUss ( ) ap — nnoUss
e Simulated system:
ap=1 bo =1 o = 0.1
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|dentification of first order bilinear model structures
Negative bilinear term Positive bilinear term
12
Uss=100 Uss=7
8
g Uss=40 Uss=S
=
S 4
Uss=10 Uss=3
O 1 1 1 1
0 1 2 3 4 5 0 5 10 15 20
Time (second) Time (second)
e |dentification procedure:

¢ From both steady-state output & time constant form two different step response tests
¢ Bilinear model parameters calculated from:

o = Yss2Uss1 — YssiUsso 2 = Ussa(Yss2 — Yss1)
71Yss2Uss1(Uss2 — Ussi)

71Yss2(Uss2 — Ussy) T1Uss1
¢ Note that if steady-state gains (or equivalently the time constants) equal then o = 0 and
system linear

Yss1
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|dentification of second order bilinear model structures

e Consider second order bilinear system

Y(s) bo . Uss
= with U(s) = —
05 ~ ¥+ (@ = mUss)s+ (@~ 0Us9) (9=~

G(s) =

e Corresponding time response to step input

boUss
ap — noUss

y(t) = (1+ Ae™" + Age™?')

where:

¢ Input dependent constants A; and Ay:

é(Ugs)

2V£(Ugg)?-1

1
Aip = 5 *

o poles p1 and po:

P12 = —&(Uss)wo(Uss) = wo(Uss) Vé(Uss)? — 1

¢ undamped natural frequency wo and damping ratio &:

_n1U
wo(Uss) = vVag — noUss £(Uss) = Zm
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ldentification of second order bilinear model structures
Simulated system: ag =5, a1 =1, bp=1, =11 =+1

Negative bilinear terms Positive bilinear terms

2
4 L Uss=30

) Use=15 é |

g 2 S

Usgs=3

0 0

0 2 4 6 8 10 0 2 4 6 8 10

Time (second) Time (second)

e I|dentification procedure:

¢ Assuming that £ and w known for two different step inputs 1 & 2 bilinear model parameters
calculated from:

2 2
20 = wppUss1 — wpyUss? 3, = 2 (é2wmUss1 — E1wniUss?) by = aOY551 ~ noVesy
Uss: — Usso Ussi — Usso Ussi
7o = Wiy — Wy nt = 2 (2wnp — E10n)
Ussi — Usso Ussi — Uss2
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Parameter estimation of bilinear models - use of cautious le ast squares

b+ R

e Cautious least squares - based on composite cost function derived from least squares

JO) = 3+ 3= (y-X8) Ay-Xd)+ (65— ) ¥ (65-0)

where:
0 - estimate of 0 Yy - measured output
X - Observation matrix 65 - safe set for 8 representing a priori knowledge
A,Y - weighting matrices
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The Flight Electronics Heater - Fan System (laboratory bili near system)
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Pragmatic Bilinear PID as natural realisation of SDP-PIP
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HVAC plant - block diagram
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HVAC plant - air handling unit & dehumidification unit
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HVAC plant - performance after optimising controller gains

Room dew point temperature [°C]
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Samples

e Simulation of system using old PI gains - Simgyg, optimised gains - Simpey
e Actual output using optimised gains - Measurednew
e Actual savings in excess of 25%so0 far
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IHTF - block diagram
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IHTF - actual plant




IHTF - longer term trials

Proportion of product for PID
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IHTF - longer term trials

Proportion of product for BPID
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IHTF - longer term trials

Average power indices for different widths of steel
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IHTF - longer term trials

Average power indices for different types of steel
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IHTF - longer term trials

Average power indices for PID & BPID control strategies
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On relation between BGPC and SDP-PIP

e Model based predictive schemes

e Effective automatic gain scheduling via non-linear controller model structure

e Use made of measured input/output signals

e Analysis feasible using tools developed for linear control theory

e Structure of SDP-PIP more flexible than BGPC

e In fact BGPC special case of SDP-PIP
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Errors-in-variables & bilinear models

e Errors-in-variables setup:

Uo, > Yo, : noise free input/output

Uo, Yoy Yk

N Bilinear Uy, Yi: input/output measurement noise
system Uk, Yic: measured system input/output
l~,lk Uk \V
yk Uk = Uok + Gk
Yk = Yo, + Yk

e Symmetric treatment of measurements
e Potential benefits for fault detection & diagnosis
e Additional insight via estimation of noise properties

e More precise estimation of variables having physical meaning
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Concluding remarks & further work

e Review of historical-technical developments in industrial context

e Recognition of real-world systems prompts premise for nonlinear approaches

e Bilinear approach builds on well established mathematical theory and
development for linear systems

e Bilinear approach represents first step towards meeting demands of
real-world systems whilst retaining linear systems as special subclass

e State-dependent parameter systems represent wider range of real-world
systems with bilinear systems as special subclass
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